今天给大家聊到了区块链工程质量监管,以及区块链质量检测相关的内容,在此希望可以让网友有所了解,最后记得收藏本站。
BIM+区块链,让城市建设更智慧
这篇文章区块链工程质量监管,我们聊聊区块链和建筑行业的结合及应用。
在开始正文之前区块链工程质量监管,先解释一下BIM的概念。
BIM (Building Information Modeling) 建筑信息模型化。美国国家BIM标准里面对BIM做了如下的解释区块链工程质量监管:
(1) 以数位化方法表达一个设施的物理和功能特性。
(2) 一个共享的知识资源。
(3) 分享跟这个设施相关的信息,在设施的整个生命周期中为所有的对策提供可靠依据的过程。
(4) 在建设项目的不同阶段中,各参与者经由在信息模型中嵌入、提取、更新和修改信息,以支持与反应各自职责的协同作业。
建筑业是当今全球范围最大的行业之一,未来依然将是世界经济增长的关键驱动力。
建筑业在我国国民经济中的地位举足轻重。国家统计局数据显示,2020年我国国内生产总值为 101万亿 元,其中建筑业总产值为 26万亿 ,占比超过 25% 。
建筑业是一个古老的行业,早在2000多年前的古人就修筑了万里长城、古埃及的金字塔这样的宏伟工程。但是发展至今,建筑业的整体管理水平和效率依然很低,其主要原因大概可归结为以下五点:
1)项目的一次性;
2)组织的松散性和临时性;
3)管理的碎片化;
4)合作的多方性和低效性;
5)生产过程的非标准化和非工业化。
以上原因带来的问题也显而易见:
1) 信任缺失 ,由于项目的一次性、组织的临时性、合作的多方性,带来不可避免的信任缺失。
2) 效率低下 ,由于组织的松散型和临时性,生产过程的非标准化和非工业化,高耗低效,整个建筑行业施工企业的利润水平平均只有3%左右
3) 风险可控性弱 ,由于缺乏系统性的标准化管理体系、管理碎片化,导致工程延期、设计变更、费用索赔几乎每个项目都不可避免。
国内建筑信息化经历了三个阶段,目前正处于第三阶段:
第一阶段: 设计信息化 ,90年代“甩图板”工程推动国内 CAD 技术应用的普及;
第二阶段: 企业信息化管理 ,2005年计算机辅助管理问题解决实现项目和企业管理信息化;
第三阶段: 全生命周期信息化 ,2015年BIM 技术的应用助力建筑业全生命周期信息集成。
1.为何要在建筑领域实施BIM?
住建部 在《 住房城乡建设部关于印发推进建筑信息模型应用指导意见的通知 》中对BIM应用的意义有详细解释,指导意见指出: BIM要为产业链贯通、工业化建造和繁荣建筑创作提供技术保障。也就是说BIM是建筑业工业化转型的技术基础 。
2.BIM具体能干什么?
1)实现建筑全生命期各参与方在同一多维建筑信息模型基础上的数据共享;
2)支持对工程环境、能耗、经济、质量、安全等方面的分析、检查和模拟;
3)为项目全过程的方案优化和科学决策提供依据;
4)支持各专业协同工作、项目的虚拟建造和精细化管理。
3.建筑工业化的意义
1)工业化生产的材质和装配式的建造方式更容易形成一套规范化系统,确保产品品质;
2)装配式建筑的大部分构件均在工厂完成,整体交付比传统建筑快 30%~50%;
3)装配式建筑现场以干法作业为主,可有效减少能源消耗以及环境污染,低碳环保;
4)装配式建筑由于其可拆除的特性还可以实现重复利用;
5)装配式建造成本的下降空间就目前而言,远高于传统建筑,后期运维费用更低,全生命周期具有更大的成本优势。
建筑工业化转型已成为国家级战略
住建部等各部位近年来陆续出台多项促进建筑业工业化、数字化、绿色建造、智能建造的重要政策。
2021年3月,国务院发布了《十四五规划和2035年远景目标纲要》,纲要明确提出要 发展智能建造,推广绿色建材、装配式建筑和钢结构住宅,建设低碳城市的发展目标 。
4.建筑业BIM数字化的重要意义
大力发展建筑工业化、数字化、智能化升级,加大智能建造在工程建设各环节应用,实现建筑业转型升级是建筑业乃至国家近10到20年的战略目标。因此,BIM数字化技术在本次建筑业转型升级过程中必将起到基础性重要作用。
建筑工业化转型的方向是 标准化+工厂化+装配式 ,BIM解决的是这个过程中的 数字集成及可视化 问题。
虽然BIM是建筑业工业化转型过程中不可或缺的技术,但是它并不能有效解决生产关系的问题,比如协作多方之间的信任、效率、复杂体系下的碎片化管理等问题。
而解决信任、协作、效率、复杂体系下的碎片化管理恰恰是区块链技术的天然优势,能够很好的与BIM技术形成互补。
因此我们说: 工业化生产(BIM支持)+数字化协作(区块链支持)+大数据决策(AI技术)=智慧建造
我们把建筑全寿命周期分为规划设计、建造、运维三个阶段来举例说明
1.规划设计阶段
跨部门协作审批将是区块链技术应用的主要场景。
规划设计阶段的特点是行政监管角色多,协作审批手续多,区块链技术的去中心化特征恰好适配此类场景,可以极大的提高协作审批效率(多地政府已开始了区块链政务审批系统的试点)。
我们假设规划设计阶段的监管单位有发改委、国土、交通、住建、水利等,再者相关单位包括建设单位、规划设计等咨询单位,他们在区块链上都有各自的节点,并且各自都有自己的信息化管理系统。
当咨询单位创建好第一阶段的BIM概念模型(比如适用于项目建议书),并加载GIS信息、规模、占地、造价等各项经济指标,将模型数据上区块链。
BIM概念模型及项目建议书经建设单位确认后,由建设单位向发改委启动审批手续,区块链智能合约自动发起所有审核流程。
发改委通过密钥访问区块链上BIM概念模型,必要时加载周边基础设施的BIM模型及GIS信息,分析该项目是否符合城市发展总体规划及项目的可行性,将审批结果上区块链,智能合约自动将审批结果的数据文件发送回建设单位。
同样,建设单位启动土地预审相关手续办理,智能合约启动,国土部门通过密钥访问区块链上的BIM占地模型,并进行审查,将审批结果上区块链,智能合约将批复结果的数据文件发送回建设单位。
与此同时,任何监管部门都可通过密钥验证发改委、国土等部门审批结果的真实性。
随着后续可行性研究、初步设计、施工图设计不断对模型的完善,发改委、国土、交通、住建等行业监管部门随时可以通过密钥访问区块链上该项目的BIM模型数据,实时监测项目有没有违规设计、建造。
所有审批工作的流程在线上自动运行,但不再是基于一个中心化的平台,而是基于去中心化的区块链技术,可有效降低协作成本,提高协作效率,并保证数据的隐私和安全。
2.建造阶段
同样我们假设施工单位、监理单位及其他第三方咨询机构在区块链上也有自己的节点,也都有自己的信息化系统,那么他们都可以通过密钥访问区块链上该项目的BIM模型数据。
我们简单地把建造过程分为计划、采购、生产、验收、支付几个环节。并且假设模型和施工阶段的WBS分解结构是一一对应的。
· 计划环节:
承包人可以通过Office系列的Projec软件,或者国内广联达的斑马进行计划编制,将计划数据文件导入区块链上的BIM模型,BIM模型就有了4D的进度可视化属性(如Autodesk系列的InfraWorks可展示),数据中还可以包括资源、资金等计划。所有参建方都可以基于该BIM模型同步开展项目管理。
· 采购环节:
建筑行业具有高度分散和复杂的供应链体系,供应商和承包人的合作可能是临时性的或者一次性的,因此信任较难建立、协作效率较低。
我们先说区块链是如何解决交易的信任问题的。
区块链是用智能合约来完成交易的,比如对于买方,交易之前智能合约首先检测买方数字钱包(央行数字人民币)的余额(抑或者银行授信、担保额度)是否满足交易标的,如果满足则锁定,当买方验收并签收了卖方的货物后,智能合约将锁定的数字人民币点对点自动汇入卖方的数字钱包。
因此区块链解决的并不是买卖双方的互信问题,而是信任已经不再是问题了。
建筑工程中砂石材料用量大,而且采购频繁、来源分散,是建材供应链中最不易掌控的材料之一。
我们假设承包人在料仓中安装了摄像头,承包人的采购系统通过摄像头检测出料仓余料低于预定的阈值(计算机视觉识别技术),系统调用计划数据(Project导入BIM模型的数据)发现未来的用量需求大于料仓总容量,则启动智能合约自动完成砂石料的订单,甚至可以从多个供应商中选择价格最低的。
砂石料供应商不需要加入任何系统,只需要在区块链节点上创建自己的账户就可以完成与承包人的自动化交易协作。
在运输过程中,供应商将运输车辆或船舶的GPS位置通过IOT硬件实时上区块链,承包人的采购系统就可以通过密钥实时追踪到货物的位置,系统可以对材料供货时间是否对生产计划造成影响进行分析(搜索算法),以便重新启动智能合约进行补救。
每一批材料的采购批次、到货时间都可以写入BIM模型对应的位置并写入区块链账本,智能合约将提醒监理单位按材料到场批次组织验收或试验检测工作。
系统可以把项目经理从繁杂的订单、询价、账务处理中解脱出来,更好的投入到更重要的事项上。
· 生产环节:
生产过程必然离不开人和设备。
工业化的一个必然的结果就是效率和质量的提高,而人和设备的过程行为质量将决定产品质量的形成过程。
因此过去以结果为导向的施工过程管理必然要转向工业化的以过程为导向的施工管理,那么每一个分项工程由哪些个班组生产,对每一组混凝土的施工配合比参数进行实时(IOT硬件)监测并写入BIM模型对应的位置,同时将这些数据写入区块链账本,永久保存、不可篡改,生产过程的所有数据应该真实、可信。
我们假设大型构建由吊装设备进行安装,再假设如果在暴雨天气、或者风力超过六级的情况下不适合吊装作业,那么吊装设备通过IOT硬件(或者网络通讯)感应到这种极限状态后,区块链智能合约将提醒现场管理人员将设备恢复到安全状态,直至危险状态解除。
生产过程中每一台设备运行的油耗、用电将通过IOT硬件进行监测,并将这些数据写入区块链账本。
区块链智能合约自动对耗能进行碳排放指标计算(GBT 51366-2019),一旦发现碳排放超过了核定指标,自动在碳交易市场购买新的指标。
前面提到的所有生产设备上的IOT硬件都无需接入参建各方的系统,参建各方只需要通过设备的密钥就可以进行数据访问。也许这个密钥被设备开发商设计成了一个客户端(如APP),那么参建各方只需要安装一个客户端就可以访问设备生成的所有数据。
· 验收环节
我们假设混凝土构建的强度由试验设备(IOT硬件)将数据直接写入BIM模型对应的位置,并写入区块链账本。
构建的外观尺寸、钢筋数量或许可以利用三维激光扫描设备生成点云,与BIM设计模型进行比对,可以根据质量检验评定标准精确计算出蜂窝麻面的百分比,验收精度将远高于人工计算的精度,写入BIM模型的对应位置和区块链账本。
所有参与验收的人员和数据写入区块链账本后永久保存,不可篡改。
假如发生质量问题,区块链上的账本记录就像按时间顺序排列的一笔流水账,从当前记录开始一直向前追溯,谁验收的?谁制造的?谁运输的?谁采购的?谁供应的一目了然。
· 支付阶段:
随着数字人民币的正式发行,并且支持可编程性,当数字人民币进入工程款支付领域后,可以说每一笔工程款的去向已基本固定,都可以在区块链进行追踪,根本不可能发生工程款挪用现象。那么当工程质量经过验收合格,符合智能合约设定的条件,则自动触发智能合约点对点的支付操作。不再经过银行,还可以降低企业的财务成本。
因此根据基本建设程序的规定,未来资金未落实的项目必然得不到开工审批,获得开工审批的项目,承包人、专业分包人、材料供应商甚至劳务人员再也无需担心拖欠工程款的问题了。
当BIM模型与实体建筑物实施锚定,实现数字资产化后,数字资产的所有权在区块链就可以实现流动。
我们假如一个实体工程构件在业主尚未支付工程款以前的所有权还暂时保留在承包人手里,当一个承包人资金出现困难,恰好区块链上的BIM数字资产(锚定了实体工程构件)证明了一定的未来收益(业主未来支付的一笔工程款),那么承包人完全可以将这部分数字资产的所有权进行抵押贷款,智能合约可以锁定未来业主支付的那一笔工程款,用于承包人赎回该笔数字资产的所有权。
3. 运维阶段
在运维阶段很好的一个场景就是设备与设备之间的智能交互。
我们假设一台无人驾驶的巡逻车通过计算机视觉识别系统发现公路上沥青路面的一处缺陷,触发智能合约启动另外一台沥青路面维修车,该维修车同样用智能合约自动下单采购所需要的沥青混合料修复材料,并自动行驶至缺陷处完成修复,在此过程中只有少量的或者根本无需人的干预。
综上所述,区块链技术+BIM可以更好地实现智慧建造,反过来BIM模型又可以作为区块链技术的数据仪表盘,随着IOT硬件的不断涌现(尤其在运维阶段),数据的不断填充,模型的不断刷新,维度越来越饱满,所见即所得,区块链+BIM将会成为一个更加智慧的智慧建造决策系统。
文章中我们列举了规划设计、建造、运维三个阶段中一些点的应用,而现实中的应用场景远不止这些例子,这些例子也仅仅起到以点带面的探讨。
文章中提到的所有技术都是现今已有的或是已经实现的功能(如区块链政务系统、供应链追踪,质量溯源等),欠缺的只是把这些技术整合起来,就像区块链技术原本也不是一项新技术,而是把分布式存储、非对称加密、共识算法等计算机现有技术整合起来,成就了这一伟大发明。
也许有人会说,BIM正向设计在我国建筑行业还未普及,基于BIM的4D、5D数字化建造管理才开始普及,此时探讨区块链技术+BIM的智慧化建造是不是为时过早?
而我想说的是,
BIM的概念早在1975年美国乔治亚理工大学ChuckEastman博士就提出了,2002年Autodesk公司正式提出BIM理念和技术,从3D的可视化开始已经发展到了今天8D的概念。
区块链技术也是早在2008年由中本聪提出,至今除了数字货币,在其他非数字货币领域也有了极为广泛的应用。
就像人工智能技术,
1956年由计算机专家约翰·麦卡锡首次提出,但一直受限于计算机技术和硬件止步不前,直至2012年的ImageNET挑战赛中视觉识别准确率达到95%以上,超越人眼的极限,在突破了计算机硬件和技术限制之后人工智能技术的应用迎来了大爆发,才有了近年来我们手机中美颜相机、语音识别、智能推送等生活应用的集中爆发。
所以说,任何一项技术,在它大规模应用爆发前,能量一直在积累,这是一个必经的过程。一方面可能是技术、硬件的限制,另一个很重要的原因就是懂得人太少、参与的人太少,一旦大家都懂了、都会了,这种爆发力就会自然而然的蓬勃出来。
就像我们在不停地吹一个气球,总有一天它会炸开 。
如果你也对区块链应用感兴趣,搜索微信公众号“ Candy链上笔记 ”,我们一起前行。
区块链的那些技术特征加大了监管难度
许多组织都有非常敏感的文件,资产或需要保护的合同。当存储数据,文件或文档时,会为每个文件创建一个散列。散列就像通过算法的指纹一样,将数据转换为固定长度的输出,这对于每一笔交易都是唯一的。
除了加密货币之外,该技术还可通过提供透明系统证明自己对其他领域的最大兴趣,从而降低交易成本,降低与第三方进行交易的风险,并缩短处理时间。随着技术在不同领域逐渐接近大众接受度,每个人都开始认识到其潜力。
区块链注意事项
区块链不受任何人和实体的控制,数据在多台计算机上完整的复制。攻击者没有一个单一的入口点,数据安全更有保障。
数据不可篡改,一旦进入区块链,任何信息都是无法更改的,甚至管理员也无法修改此信息。
无第三方并且可访问。区块链的去中心和帮助对点交易,无论是交易还是交换资金,都无需等三方批准。而且,网络中是有的节点都可以轻松访问信息。区块链最大的特性是去中心化,去中心化意味着所有操作都部署在分布式账本上,而不再部署在中心化机构的服务器上。
检测报告虚假对工程实体质量有什么影响
假如检测报告虚假的话,施工单位可以将原本不合格的材料使用在工程实体,具体产生的影响要看使用材料的劣质程度,就比如外墙弹性涂料,稍劣质的墙面特别是东西山墙容易出现龟裂,再劣质点可能就是起皮掉色了
区块链监管就是以链治链?是这样吗
以链治链”,也就是建立起“法链”(RegChain),借助
区块链
技术来对区块链行业进行监管,建立
金融监管
从双峰到
双维
的框架。现在区块链越来越发展,而且也不止在金融行业,
长沙高新区
发起的现在有一个中芯区块链服务平台项目的,是区块链+公共服务模式,正在征集企业上链的
区块链技术的升级让区块链应用实现可监管性
区块链技术的升级让区块链应用实现可监管性
互联网时代,计算机在很早就提出了很多可信计算的方式,就是任何一个区块链技术节点采用了可信计算的模块。所以可信计算能够让分布式网络里面的技术的升级与迭代更容易。
在区块链技术的实名制方面,美国有一个区块链技术实验室,他们提出了很多实名制的技术方案。比如说目前区块链技术是点对点的,很多国家比如韩国他们每个人有电子证书,在交易时要采用实名制的电子证书进行签名。当然也有更简单的方案,我们可以把整台设备的IP地址等作为交易的一部分,存储在区块链应用上。
这样的话整个区块链技术的交易就能够实现技术的实名制。所以这是一种可选的实名制,我们可以建设一个实名制的区块链应用网络,也可以建设一个匿名的区块链应用网络。
超级钥匙也是目前区块链技术发展的重大进步,因为一个分布式网络,我们如何对它进行监管,如何对它进行控制?密码学,我们叫所谓的多重签名。
我们(yunbaokeji)设计不一样的区块链应用网络,如果是一个银行使用的区块链应用网络,我们可以设计一个超级钥匙,所有节点的钥匙必须跟超级钥匙一起才能生成钱包。
那么这个超级钥匙,要掌握在也许是监管者手中,也许是某些机构的手里,他们能够对区块链应用进行有限的控制。比如说目前区块链应用上的数据是不能删除的,那么超级钥匙其实是能够让有权力的机构对分布式的网络进行修改。
那么区块链到底是一种什么样的技术呢:
(1) 分布式去中心化,
(2) 无须信任系统,
(3) 不可篡改和加密安全性. 这些字分开我都认识,但是合起来是在说什么呢?
1,分布式去中心化,网上铺天盖地都是讲这个的,无需多说,简而言之,不再需要一个中心放置服务器,大家的数据全从这个服务器上获取,而是将数据放在联网的N台设备上,所有人都可以下载储存。
2.无须信任系统。 你相信银行吗?因为银行是国家认可成立的,区块链实现了一种不需第三方的信任方式,用互联网上N台设备储存数据,人人皆可验证这些数据。只要超过一半人认为你是对的,你就是对的。没有哪个人或组织可以修改互联网上超过一半的内容吧。你不相信别人,总该相信自己的验证结果吧,如果你不相信自己,那恭喜你,你是名伟大的哲学家。
3.不可篡改和加密安全性
区块链采用了一系列技术,比如SHA256和RIPEMD160等密码学算法来保证不可篡改和加密安全性,举个例子0101100011101110 这代表了一个字符,算法要求左移4位,以0补充,把左边4位扔掉,右边被4个0得到结果,根据结果怎么去反推原来的是多少?当然这只是个简单的例子。
写到这里,本文关于区块链工程质量监管和区块链质量检测的介绍到此为止了,如果能碰巧解决你现在面临的问题,如果你还想更加了解这方面的信息,记得收藏关注本站。
标签: #区块链工程质量监管
评论列表